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1
SYSTEMS AND METHODS FOR OBTAINING
LARGE CREEPAGE ISOLATION ON
PRINTED CIRCUIT BOARDS

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this
specification are herein incorporated by reference to the same
extent as if each individual publication or patent application
was specifically and individually indicated to be incorporated
by reference.

FIELD

The present disclosure relates generally to powering medi-
cal devices. More specifically, the present disclosure relates
to obtaining sufficient creepage insulation distances required
for high voltage medical devices.

BACKGROUND

Medical devices having electrical components typically
must meet various electrical safety standards imposed by
governing bodies (for example, in the United States, medical
electrical equipment must satisfy the general standard IEC
60601-1 published by the International Electrotechnical
Commission). One ofthe major concerns in electrical devices
is electrical isolation. In applications where high voltages are
used in close proximity to a patient, it can be very challenging
to achieve the proper level of electrical isolation, since as the
voltage used increases, the creepage distance and air clear-
ance required must also be increased.

Generally, opto-isolators are used to transfer a signal over
an isolation barrier, and DC to DC converters or transformers
are used to transfer power over the isolation barriers. Opto-
isolators currently on the market are capable of obtaining
creepage insulation up to approximately 7 mm. However, in
very high voltage devices, these opto-isolators are not capable
of achieving the creepage insulation required by IEC 60601-
1.

FIG. 1 illustrates an electrical circuit system 100 including
a true ground circuit 102 and a single isolated circuit 104. In
FIG. 1, the two circuits 102 and 104 are separated by a
creepage insulation distance D. Power can be transmitted
between the two circuits with, for example, an isolated DC to
DC converter, and the input/output signals can be transmitted
between the circuits with opto-isolators 108 and 110. As
known in the art, opto-isolators are electronic devices config-
ured to transfer electrical signals via light waves (e.g., from a
light-emitting diode (LED) to a photosensor (such as a pho-
totransistor or photoresistor). In the illustrative schematic
shown in FIG. 1, traditional opto-isolators are typically
capable of providing creepage isolation distances D up to ~7
mm.

Thus, methods and systems are required for high voltage
medical devices to obtain creepage isolation of at least 12
mm-14 mm.

SUMMARY OF THE DISCLOSURE

In one embodiment, an electrical circuit is provided, com-
prising a ground circuit, a floating circuit optically coupled to
the ground circuit, the floating circuit being electrically iso-
lated from the ground circuit by a first creepage isolation
distance, and an isolated circuit optically coupled to the float-
ing circuit, the isolated circuit being electrically isolated from
the floating circuit by a second creepage isolation distance,
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the isolated circuit being electrically isolated from the ground
circuit by a total creepage isolation distance equal to a com-
bination of the first and second creepage isolation distances.

In some embodiments, the total creepage isolation distance
is at least twice as large as the first creepage isolation distance.

In other embodiments, the circuit further comprises a first
opto-isolator configured to optically couple a signal input
from the ground circuit to the floating circuit. In another
embodiment, the circuit further comprises a second opto-
isolator configured to optically couple the signal input from
the floating circuit to the isolated circuit.

In one embodiment, the first opto-isolator comprises a
diode disposed on the ground circuit and a transistor disposed
on the floating circuit. In another embodiment, the second
opto-isolator comprises a diode disposed on the floating cir-
cuit and a transistor disposed on the isolated circuit.

In some embodiments, the circuit further comprises a first
opto-isolator configured to optically couple a signal input
from the isolated circuit to the floating circuit. In one embodi-
ment, the circuit further comprises a second opto-isolator
configured to optically couple the signal input from the float-
ing circuit to the ground circuit.

In one embodiment, the first opto-isolator comprises a
diode disposed on the isolated circuit and a transistor dis-
posed on the floating circuit. In another embodiment, the
second opto-isolator comprises a diode disposed on the float-
ing circuit and a transistor disposed on the ground circuit.

In some embodiments, the first creepage isolation distance
is approximately 7 mm. In another embodiment, the second
creepage isolation distance is approximately 7 mm and the
total creepage isolation distance is approximately 14 mm.

In one embodiment, the ground circuit, floating circuit, and
double isolated circuit are disposed on a printed circuit board.

An electrical circuit is provided, comprising, a ground
circuit, a first floating circuit optically coupled to the ground
circuit, the first floating circuit being electrically isolated
from the ground circuit by a first creepage isolation distance,
a second floating circuit optically coupled to the first floating
circuit, the second floating circuit being electrically isolated
from the first floating circuit by a second creepage isolation
distance, and a triple isolated circuit optically coupled to the
second floating circuit, the triple isolated circuit being elec-
trically isolated from the second floating ground circuit by
third creepage isolation distance, the triple isolated circuit
being isolated from the ground circuit by a total creepage
isolation distance equal to a combination of the first, second,
and third creepage isolation distance,

In some embodiments, the total creepage isolation distance
is at least three times as large as the first creepage isolation
distance.

In one embodiment, the circuit further comprises a first
opto-isolator configured to optically couple a signal input
from the ground circuit to the first floating circuit. In another
embodiment, the circuit further comprises a second opto-
isolator configured to optically couple the signal input from
the first floating circuit to the second floating circuit. In an
additional embodiment, the circuit further comprises a third
opto-isolator configured to optically couple the signal input
from the second floating circuit to the triple isolated circuit.

In some embodiments, the first opto-isolator comprises a
diode disposed on the ground circuit and a transistor disposed
on the first floating circuit. In another embodiment, the sec-
ond opto-isolator comprises a diode disposed on the first
floating circuit and a transistor disposed on the second float-
ing circuit. In an additional embodiment, the third opto-iso-
lator comprises a diode disposed on the second floating cir-
cuit and a transistor disposed on the triple isolated circuit.
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A method of increasing a creepage isolation distance in an
electrical circuit is also provided, comprising optically cou-
pling a ground circuit to a floating circuit to electrically iso-
late the floating circuit from the ground circuit by a first
creepage isolation distance, and optically coupling an iso-
lated circuit to the floating circuit to electrically isolate the
isolated circuit from the floating circuit by a second creepage
isolation distance, and to electrically isolate the isolated cir-
cuit from the ground circuit by a total creepage isolation
distance equal to a combination of the first and second creep-
age isolation distances.

In some embodiments of the method, optically coupling
comprises optically coupling with an opto-isolator. Inanother
embodiment, the total creepage isolation distance is approxi-
mately 14 mm.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with par-
ticularity in the claims that follow. A better understanding of
the features and advantages of the present invention will be
obtained by reference to the following detailed description
that sets forth illustrative embodiments, in which the prin-
ciples of the invention are utilized, and the accompanying
drawings of which:

FIG. 1 illustrates an electrical circuit having a ground cir-
cuit and a single isolated circuit.

FIG. 2 illustrates an electrical circuit having a ground cir-
cuit, a floating circuit, and a double isolated circuit.

FIG. 3 is a schematic drawing of one embodiment of a
printed circuit board layout including the circuits described
above in FIG. 2.

FIG. 4 illustrates a 3D view of the printed circuit board of
FIG. 3.

FIG. 5 illustrates one embodiment which can provide an
isolation creepage distance of n times a single isolation dis-
tance (e.g. n times 7 mm of creepage distance for conven-
tional opto-isolators).

DETAILED DESCRIPTION

The present disclosure describes and illustrates effective
and inexpensive methods and systems for obtaining a wide
range of creepage isolation distances. These methods and
systems are particularly well suited for high-voltage medical
device applications where large creepage isolation distances
are required by law or statute.

FIG. 2 illustrates a schematic electrical diagram of one
embodiment of an electrical circuit 200 configured to provide
large (e.g., up to 14 mm) creepage isolation distances. The
electrical circuit can be disposed on, for example, a printed
circuit board. As shown in FIG. 2, circuit 200 can include
ground circuit 202, floating circuit 203, and double isolated
circuit 204. Power can be transmitted from the ground circuit
202 to the double isolated circuit 204 via a pair of isolated DC
to DC converters 206a and 2065. The input/output signals can
be transmitted from the ground circuit 202 to the double
isolated circuit 204 via opto-isolators 208a and 2085 (signal
input) and opto-isolators 210a and 2105 (signal output).

Ground circuit 202 can be in optical/electrical communi-
cation with floating circuit 203, and floating circuit 203 can be
in optical/electrical communication with double isolated cir-
cuit 204. The opto-isolators used for coupling the circuits can
be electronic devices configured to transfer electrical signals
via light waves (e.g., from a light-emitting diode (LED) to a
photosensor (such as a phototransistor or photoresistor).
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Opto-isolators typically have an LED as an input and various
components at the output (e.g., mosfet, IGBT, logic gate,
triac, Darlington, etc).

As shown in FIG. 2, opto-isolator 2084 can comprise a
diode in ground circuit 202 optically coupled to a transistor in
floating circuit 203 for communicating signal inputs from the
ground circuit to the floating circuit. Similarly, opto-isolator
210a can comprise a diode in floating circuit 203 optically
coupled to a transistor in ground circuit 202 for communicat-
ing signal outputs from the floating circuit to the ground
circuit. A similar configuration can communicate signal
inputs and outputs from the floating circuit to the double
isolated circuit, namely, opto-isolator 2085 comprising a
diode in the floating circuit optically coupled to a transistor in
the double isolated circuit, and opto-isolator 2105 comprising
a diode in the double isolated circuit optically coupled to a
transistor in the floating circuit.

In one embodiment, the electrical circuit of FIG. 2 com-
prises a ground circuit 202, a floating circuit 203 optically
coupled to the ground circuit via opto-isolators 208a and
210a, the floating circuit being electrically isolated from the
ground circuit by a first creepage isolation distance D1, and
an isolated circuit optically coupled to the floating circuit via
opto-isolators 2085 and 2105, the isolated circuit being elec-
trically isolated from the floating circuit by a second creepage
isolation distance, the isolated circuit being electrically iso-
lated from the ground circuit by a total creepage isolation
distance equal to a combination of the first and second creep-
age isolation distances.

The electrical circuit 200 of FIG. 2 can be configured to
optically couple a signal input from the ground circuit to the
floating circuit, and to optically couple the signal input from
the floating circuit to the isolated circuit. Similarly, the elec-
trical circuit of FIG. 2 can be configured to optically couple a
signal input from the isolated circuit to the floating circuit,
and to optically couple the signal input from the floating
circuit to the ground circuit.

The floating circuit is isolated from the ground and isolated
circuits because there is no physical point of contact between
the floating circuit and either the ground or isolated circuits.
Instead, the floating circuit is optically coupled to both the
ground and isolated circuits. The values of the resistors in the
floating circuit are calculated using ohms law and depend on
the LED forward current, LED voltage drop, and VCC volt-
age. In some embodiments, very fast opto-isolators with logic
output can be used to keep delays less than 10 ns.

In FIG. 2, the addition of floating circuit 203 between
ground circuit 202 and double isolated circuit 204 allows
system 200 to essentially double the creepage isolation dis-
tances obtainable with a single conventional opto-isolator. In
FIG. 2, the creepage isolation distance effectively becomes
D1+D2, or 2xD. Since conventional opto-isolators are
capable of approximately ~7 mm of creepage isolation, the
system of FIG. 2 is capable of providing up to approximately
~14 mm of creepage isolation. It should be understood that if
opto-isolators are capable of providing more than the ~7 mm
of creepage isolation, the circuit systems described herein
would still be capable of providing double the creepage iso-
lation distances obtainable with a single opto-isolator.

FIG. 3 is a schematic drawing of one embodiment of a
printed circuit board layout including the circuits described
above in FIG. 2. In FIG. 3, printed circuit board 301 can
include ground circuit 302, floating circuit 303, and double
isolated circuit 304. Ground circuit 302 can be electrically
isolated from floating circuit 303 via opto-isolator 308. Simi-
larly, double isolated circuit 304 can be electrically isolated
from floating circuit 303 via opto-isolator 310. As shown in
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the diagram, this embodiment provides a creepage isolation
distance of 7.24 mm+7.43 mm for a total of approximately
14.73 mm of isolation.

FIG. 4 illustrates a 3D view of the printed circuit board of
FIG. 3. Printed circuit board 401 includes all of the same
features of the PCB layout of FIG. 3, including ground circuit
402, floating circuit 403, and double isolated circuit 404, and
opto-isolators 408 and 410. PCB 401 also illustrates the input/
output signal path from ground circuit 402, through floating
circuit 403, to double isolated circuit 404 and back. During a
PCB layout process, it is important that the creepage require-
ments are met throughout the entire PCB. The circuits shown
in FIGS. 3 and 4 satisfy the requirement of having a minimum
of ~14 mm of creepage distance throughout the entire PCB.

The embodiments described above can be further applied
to providing even larger isolation creepage distances by using
multiple floating circuits. FIG. 5 illustrates one embodiment
which can provide an isolation creepage distance of n times a
single isolation distance (e.g. n times 7 mm of creepage
distance for conventional opto-isolators). In FIG. 5, multiple
floating circuits are disposed between the ground circuit 502
and the isolated circuit 504. The amount of creepage distance
desired determines the number of floating circuits used. For
example, to achieve approximately 21 mm of creepage dis-
tance with a conventional opto-insulator, a total of two float-
ing circuits can be used between the ground and isolated
circuits. The input/output signals can be optically transmitted
from the ground circuit, through the floating circuits, to the
isolated circuit, via opto-insulators 5084/510a through 5087+
1/5107+1. Similarly, n+1 DC/DC converters can transfer
power from the ground circuit, through the floating circuits, to
the isolated circuit. This configuration provides for a total
isolation creepage distance of n times the amount of isolation
provided by a single opto-insulator. For example, assuming
an opto-isolator capable of providing 7 mm of isolation, two
floating circuits would provide ~21 mm of isolation, three
floating circuits would provide ~28 mm of isolation, and so
forth.

Referring to FIG. 5, an electrical circuit with two floating
circuits (and a total of ~21 mm of isolation with conventional
opto-isolators) can be described. In this embodiment, the
electrical circuit of FIG. 5 comprises a ground circuit 502, a
first floating circuit 203a optically coupled to the ground
circuit via opto-isolators 508a and 510a, the floating circuit
being electrically isolated from the ground circuit by a first
creepage isolation distance D1, a second floating circuit
2037+1 optically coupled to the first floating circuit via opto-
isolators 5085 and 5105, the second floating circuit being
electrically isolated from the ground circuit by a first creep-
age isolation distance D1 and a second creepage isolation
distance D2, the electrical circuit further comprising an iso-
lated circuit optically coupled to the second floating circuit
via opto-isolators 5087+1 and 510#z+1, the isolated circuit
being electrically isolated from the floating circuit by a third
creepage isolation distance, the isolated circuit being electri-
cally isolated from the ground circuit by a total creepage
isolation distance equal to a combination of the first, second,
and third creepage isolation distances.

In this example, the circuit can be configured to optically
couple a signal input from the ground circuit to the first
floating circuit, to optically couple the signal input from the
first floating circuit to the second floating circuit, and to
optically couple the signal input from the second floating
circuit to the isolated circuit. Similarly, the electrical circuit of
FIG. 5 can be configured to optically couple a signal input
from the isolated circuit to the second floating circuit, to
optically couple the signal input from the second floating
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circuit to the first floating circuit, and to optically couple the
signal input from the first floating circuit to the ground circuit

As for additional details pertinent to the present invention,
materials and manufacturing techniques may be employed as
within the level of those with skill in the relevant art. The same
may hold true with respect to method-based aspects of the
invention in terms of additional acts commonly or logically
employed. Also, it is contemplated that any optional feature
of the inventive variations described may be set forth and
claimed independently, or in combination with any one or
more of the features described herein. Likewise, reference to
a singular item, includes the possibility that there are plural of
the same items present. More specifically, as used herein and
in the appended claims, the singular forms “a,” “and,” “said,”
and “the” include plural referents unless the context clearly
dictates otherwise. It is further noted that the claims may be
drafted to exclude any optional element. As such, this state-
ment is intended to serve as antecedent basis for use of such
exclusive terminology as “solely,” “only” and the like in
connection with the recitation of claim elements, or use of a
“negative” limitation. Unless defined otherwise herein, all
technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in
the art to which this invention belongs. The breadth of the
present invention is not to be limited by the subject specifi-
cation, but rather only by the plain meaning ofthe claim terms
employed.

What is claimed is:

1. An electrical circuit, comprising:

a ground circuit;

a floating circuit optically coupled to the ground circuit
with a first opto-isolator, the floating circuit being elec-
trically isolated from the ground circuit by a first creep-
age isolation distance; and

an isolated circuit optically coupled to the floating circuit
with a second opto-isolator, the isolated circuit being
electrically isolated from the floating circuit by a second
creepage isolation distance, the first opto-isolator being
electrically connected to the second opto-isolator in
series so that the isolated circuit is electrically isolated
from the ground circuit by a total creepage isolation
distance equal to a combination of the first and second
creepage isolation distances.

2. The electrical circuit of claim 1 wherein the total creep-
age isolation distance is at least twice as large as the first
creepage isolation distance.

3. The electrical circuit of claim 1 wherein the first opto-
isolator is configured to optically couple a signal input from
the ground circuit to the floating circuit.

4. The electrical circuit of claim 3 wherein the second
opto-isolator is configured to optically couple the signal input
from the floating circuit to the isolated circuit.

5. The electrical circuit of claim 3 wherein the first opto-
isolator comprises a diode disposed on the ground circuit and
a transistor disposed on the floating circuit.

6. The electrical circuit of claim 4 wherein the second
opto-isolator comprises a diode disposed on the floating cir-
cuit and a transistor disposed on the isolated circuit.

7. The electrical circuit of claim 1 wherein the first opto-
isolator is configured to optically couple a signal input from
the isolated circuit to the floating circuit.

8. The electrical circuit of claim 7 wherein the second
opto-isolator is configured to optically couple the signal input
from the floating circuit to the ground circuit.

9. The electrical circuit of claim 7 wherein the first opto-
isolator comprises a diode disposed on the isolated circuit and
a transistor disposed on the floating circuit.
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10. The electrical circuit of claim 8 wherein the second
opto-isolator comprises a diode disposed on the floating cir-
cuit and a transistor disposed on the ground circuit.

11. The electrical circuit of claim 1 wherein the first creep-
age isolation distance is approximately 7 mm.

12. The electrical circuit of claim 1 wherein the second
creepage isolation distance is approximately 7 mm and the
total creepage isolation distance is approximately 14 mm.

13. The electrical circuit of claim 1 wherein the ground
circuit, floating circuit, and double isolated circuit are dis-
posed on a printed circuit board.

14. An electrical circuit, comprising:

a ground circuit;

a first floating circuit optically coupled to the ground cir-
cuit, the first floating circuit being electrically isolated
from the ground circuit by a first creepage isolation
distance;

a second floating circuit optically coupled to the first float-
ing circuit, the second floating circuit being electrically
isolated from the first floating circuit by a second creep-
age isolation distance; and

a triple isolated circuit optically coupled to the second
floating circuit, the triple isolated circuit being electri-
cally isolated from the second floating ground circuit by
a third creepage isolation distance, the triple isolated
circuit being isolated from the ground circuit by a total
creepage isolation distance equal to a combination of the
first, second, and third creepage isolation distances.

15. The electrical circuit of claim 14 wherein the total
creepage isolation distance is at least three times as large as
the first creepage isolation distance.

16. The electrical circuit of claim 14 further comprising a
first opto-isolator configured to optically couple a signal input
from the ground circuit to the first floating circuit.

17. The electrical circuit of claim 16 further comprising a
second opto-isolator configured to optically couple the signal
input from the first floating circuit to the second floating
circuit.

18. The electrical circuit of claim 17 further comprising a
third opto-isolator configured to optically couple the signal
input from the second floating circuit to the triple isolated
circuit.
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19. The electrical circuit of claim 16 wherein the first
opto-isolator comprises a diode disposed on the ground cir-
cuit and a transistor disposed on the first floating circuit.

20. The electrical circuit of claim 17 wherein the second
opto-isolator comprises a diode disposed on the first floating
circuit and a transistor disposed on the second floating circuit.

21. The electrical circuit of claim 18 wherein the third
opto-isolator comprises a diode disposed on the second float-
ing circuit and a transistor disposed on the triple isolated
circuit.

22. A method of increasing a creepage isolation distance in
an electrical circuit, comprising:

optically coupling a ground circuit to a floating circuit with

a first opto-isolator to electrically isolate the floating
circuit from the ground circuit by a first creepage isola-
tion distance; and
optically coupling an isolated circuit to the floating circuit
with a second-opto isolator to electrically isolate the
isolated circuit from the floating circuit by a second
creepage isolation distance, and electrically connecting
the first opto-isolator to the second opto-isolator in
series to electrically isolate the isolated circuit from the
ground circuit by a total creepage isolation distance
equal to a combination of the first and second creepage
isolation distances.
23. The method of claim 22 wherein the total creepage
isolation distance is approximately 14 mm.
24. An electrical circuit, comprising:
a ground circuit;
afloating circuit optically coupled to the ground circuit, the
floating circuit being electrically isolated from the
ground circuit by a first creepage isolation distance; and

an isolated circuit comprising a first opto-isolator config-
ured to optically couple a signal input of the isolated
circuit to the floating circuit, the first opto-isolator com-
prising a diode disposed on the isolated circuit and a
transistor disposed on the floating circuit, the isolated
circuit being electrically isolated from the floating cir-
cuit by a second creepage isolation distance, the isolated
circuit being electrically isolated from the ground circuit
by a total creepage isolation distance equal to a combi-
nation of the first and second creepage isolation dis-
tances.



